

Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C and Science Double Award (4SD0) Paper 1C

Question number	Answer	Notes	Marks
1 (a)	Four more particles (randomly spaced and) far apart	IGNORE any lines or arrows ACCEPT more than four particles as long as they are far apart REJECT any particles touching	1 GR
(b)	An explanation that links the following two points		2 EXP
	M1 (mean kinetic) energy of particles increases	ALLOW particles move faster/more quickly IGNORE particles vibrate more IGNORE it has more energy/ heat energy increases	<u> </u>
	M2 more particles have enough energy to escape /more particles overcome the (intermolecular) forces (of attraction) holding them together	ALLOW particles escape more quickly/more easily IGNORE more collisions REJECT breaking of bonds	
		ALLOW molecules /atoms for particles in M1 and M2	
(c) (i)	condensation/condensing		1 CL
(ii)	$H_2O(g) \rightarrow H_2O(l)$	ACCEPT multiples Formula must be correct	1 GR
		ALLOW steam(g) → water(l) water(g) → water(l) Water vapour(g) →water(l) ALLOW upper case letters for state symbols Ignore missing brackets	
(d)	M1 <u>regular</u> arrangement of particles/particles closely packed	ALLOW particles in a regular lattice	2 EXP
	M2 (particles) vibrate around a fixed position/vibrate only		
			Total 7

Electron Proton Neutron Relative mass 0.0005 1 1 Relative charge -1 +1 0 ALLOW - + All 4 correct 2 marks 2 or 3 correct 1 mark (b) (i) B (3) A is incorrect as 2 is not the atomic number of P	2
Relative mass 0.0005 1 1	1
Relative charge -1 +1 0 ALLOW - + All 4 correct 2 marks 2 or 3 correct 1 mark	1
ALLOW - + All 4 correct 2 marks 2 or 3 correct 1 mark	1
(b) (i) B (3)	1
(b) (i) B (3)	1
A is incorrect as 2 is not the atomic number of P	•
C is incorrect as 4 is not the atomic number of P D is incorrect as 7 is the mass number of P	
(ii) B (16)	1
A is incorrect as 8 is the atomic number of U C is incorrect as 18 is not the mass number of U D is incorrect as 26 is not the mass number of U	
(iii) S ALLOW nitrogen/N/N ₂	1
(c) (i) An explanation that links the following two points	2
M1 (Q and R have) same number of protons/ both have 5 protons IGNORE same number of electrons	
M2 (but) different numbers of neutrons/ (Q has) 5 neutrons and (R has) 6 neutrons/R has an extra neutron latomic and mass numbers	
(ii) M1 20.6 × 10 + 79.4 × 11 OR 1079.4	3
M2 $\frac{20.6 \times 10 + 79.4 \times 11}{100}$ OR $\frac{1079.4}{100}$ OR 10.794 ALLOW ecf if incorrect mass numbers used	
M3 10.8 10.8 without working scores 3	
10.79/10.794 without working scores 2	
Use of 5 and 6 = 5.8 scores 2	
Use of 15 and 16 =	
15.8 scores 2 Use of 5 and 5 =5.0	
scores 1	Total 10

Question number	Answer	Notes	Marks
3 (a) (i)	fractional distillation	ALLOW fractionating	1
(ii)	(crude oil/it is) heated / vapourised/ boiled	Ignore evaporated	1
(iii)	Е	ALLOW gasoline/petrol	1
(iv)	kerosene	ALLOW paraffin	1
(v)	(Fuel) for ships	ALLOW any acceptable use of fuel oil eg home heating, industrial heating, electricity generation, power station, furnaces for metal smelting, feedstock for plastics/fertilisers	1
(b)	An explanation that links the following three points		3
	M1 B has longer chain/molecules ORA	ALLOW B has larger/bigger/longer chain/ molecule/hydrocarbon ALLOW molecule/hydrocarbon with greater mass	
	M2 B has stronger intermolecular forces/bonds Forces/bonds between molecules ORA	ALLOW more intermolecular forces/ bonds REJECT IMF between atoms	
	M3 more energy is needed to overcome the (intermolecular) forces/intermolecular bonds separate the molecules ORA	No M2 or M3 if any reference to breaking of covalent bonds	
(c) (i)	silica / alumina (catalyst)	ACCEPT SiO ₂ /Al ₂ O ₃ /silicon dioxide /aluminium oxide /aluminosilicates /zeolites	1
(ii)	Any one of the following two pairs		2
	M1 C_2H_4 and M2 C_5H_{10} OR M1 C_3H_6 and M2 C_4H_8	If the equation does not balance allow 1 mark for a correct formula of an alkene	
(iii)	(to make) polymers /polymerisation	ACCEPT the name of a correct addition polymer eg polyethene, polypropene etc.	1
		ACCEPT to make alcohol(s) Reject fuels	
		,	Total 12

	uesti numb		Answer	Notes	Marks
4	(a)	(i)	nitrogen	ALLOW N ₂	1
		(ii)	carbon dioxide	ALLOW CO ₂	1
		(iii)	argon	ALLOW Ar	1
		(iv)	hydrogen	ALLOW H ₂	1
		(v)	carbon dioxide	ALLOW CO ₂	1
		(vi)	(12 + 2 × 16 =) 44		1
		(vii)	air is a mixture (of gases) / does not have a formula / does not have an $M_{\rm r}$ OWTTE		1
	(b)	(i)	(thermal) decomposition		1
		(ii)	M1 green M2 (to) black	Mark independently colours must be in the correct order	2
		(iii)	$CuCO_3 \rightarrow CuO + CO_2$	ALLOW multiples and fractions	1
				IGNORE state symbols even if incorrect	
					Total 11

Question number	Answer	Notes	Marks
5 (a) (i)	M1 (compounds with) same molecular formula	IGNORE general formula/chemical formula	2
	M2 different structural/displayed formulae	ALLOW different structures/arrangement of atoms	
(ii)	M1 displayed formula of butane H H H H	REJECT molecular formula in structure	2
	H-C-C-C-H H H H H	Accept either order	
	M2 displayed formula of methylpropane HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		
(b) (i)	ultraviolet/UV (radiation)	ALLOW ultraviolet/UV light/rays	1
(ii)	$C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$	ALLOW multiple substitutions as long as the equation is balanced	1
(iii)	Substitution		1
(c)	An explanation that links the following two points		2
	M1 (has) <u>all</u> single bonds/ <u>only</u> single bonds/ (has) no double/multiple bonds		
	M2 (so) no other atoms can be added (to ethane)/no addition reactions	ALLOW contains the maximum number of hydrogen atoms /each carbon bonded to four hydrogen atoms ALLOW only undergoes substitution reactions	
(d)	M1 with ethane bromine water stays orange/yellow	ALLOW no (colour) change /not decolourised IGNORE no reaction ,no observation IGNORE brown REJECT any other colour	2
	M2 with ethene bromine water changes (from orange/yellow) to colourless/ is decolourised	IGNORE brown REJECT any other colour	

(e)	An explanation that links the following three points		3
	$M1$ there are twice as many H atoms as C atoms in alkenes OR general formula of alkenes is C_nH_{2n}	ALLOW examples of any two from C ₂ H ₄ C ₃ H ₆ C ₄ H ₈	
	M2 (so alkenes) empirical formula is always CH ₂		
	M3 (alkanes)empirical formula of C_2H_6 is CH_3 and empirical formula of C_4H_{10} is C_2H_5 (shows they are different) Alkanes general formula is C_nH_{2n+2} so can't divide by n		

(f)	M1	<u>19.2</u> 12	4.0 1	12.8 16	64.0 80	0 marks for upside down calculation or use of	3
			·	. •	20	atomic numbers	
						Ecf on incorrect atomic	
						mass but can't be an atomic number 6,8 or 35	
						aconine number 6,6 or 55	
	M2	1.6	4.0 0.8	0.8 0.8	0.8 0.8		
		0.8	0.8	0.8	0.8		
	OR	2	5	1	1		
	М3	C_2H_5	OBr			Symbols can be in any	
						order	
						correct answer without	
						correct answer without working scores 3	
							Total 17

Question number	Answer	Notes	Marks
6 (a)	Relights/ignites a glowing splint/spill		1
(b)	M1 3 bond pairs correct M2 rest of molecule fully correct Eg.	ALLOW any combination of dots and crosses M2 dep on M1	2
	H x o v o x H		
	X: electron of H •: electron of O		
(c) (i)	all points plotted correctly to the nearest grid line (+-1/2 small square)		1
(ii	best fit curve starting at 0 and levelling off at 94 cm ³	Ecf possible from misplotted point	1
(d) (i)	An explanation that links the following three points		3
	M1 fewer particles (in the same volume)	REJECT if reference to less/more kinetic energy/less movement	
	M2 fewer collisions per unit time/less frequent collisions	IGNORE less chance of collisions REJECT if reference to less/more kinetic energy/less movement	
	M3 (so) rate of reaction decreases	MAX 1 mark can be awarded here If kinetic energy/particle movement mentioned in answer	
(ii	M1 curve starting at 0 and less steep than original curve		2
	M2 curve levelling off at 46-48 cm ³ inclusive		
(e)	An explanation that links the following two points M1 provides an alternative pathway/route		2
	M2 with lower activation energy		
			Total 12

Question number	Answer	Notes	Marks
7 (a)	A description that refers to the following six points		6
	M1 add sodium hydroxide (solution)	ALLOW add (aqueous) ammonia	
	M2 if a green precipitate forms it is an iron(II)/Fe ²⁺ compound	M2 and M3 dep on M1	
	M3 if a brown precipitate forms it is an iron(III)/Fe ³⁺ compound	ALLOW red- brown/orange-brown precipitate	
	M4 add silver nitrate (solution to a fresh sample)	IGNORE addition of nitric acid REJECT addition of hydrochloric or sulfuric acid for M4	
	M5 if cream precipitate forms it is a bromide/Br	M5 and M6 dep on addition of silver	
	M6 if white precipitate forms it is a chloride/Cl ⁻	nitrate	
(b)	M1 moles of iron = $2.8 \div 56 = 0.05(0)$		3
	M2 2 mol iron reacts with 3 mol chlorine		
	M3 moles of Fe to react with $Cl_2 = \underline{0.060 \times 2} = 0.04(0)$		
	(so iron is in excess)		
	OR M2 2 mol iron reacts with 3 mol chlorine/ 3 mol chlorine reacts with 2 mol iron		
	M3 moles of Fe to react with $Cl_2 = 0.060 \times 2 = 0.04(0)$		
	M4 $0.04(0) \times 56 = 2.24 g$ (so iron is in excess)		
	OR M1 moles of iron = 2.8 ÷ 56 = 0.05(0)		
	M2,M3 moles of Cl ₂ to react with Fe = $\frac{0.05(0) \times 3}{2}$ = 0.075		
	(so 0.060 moles is not enough, so iron is in excess)	MAXIMUM 3 MARKS	
(c) (i)	red	ALLOW pink REJECT red-orange	1
(ii)	H ⁺	ALLOW H ₃ O ⁺	1
			Total 11

Question number	Answer	Notes	Marks
8 (a)	M1 (electrostatic) attraction between (two) nuclei	nuclei must be plural ALLOW nucleus of both/two atoms	2
	M2 and shared/bonding pair(s) of electrons	Journ en a desmo	
	OR		
	M1 (electrostatic) attraction between shared/bonding pair (s) of electrons		
	M2 and (two) nuclei	nuclei must be plural	
(b)	An explanation that links the following three points		3
	M1 diamond is a giant covalent structure/giant lattice structure	IGNORE giant molecule	
	M2 there are (many) strong covalent bonds (which need to be broken)		
	M3 large amount of (heat/thermal) energy needed to break the covalent bonds	IGNORE more energy	
		no M2 or M3 if reference to intermolecular forces/ions in diamond	
(c)	An explanation that links the following two points		2
	M1 (graphite has) <u>delocalised</u> electrons	Ignore free electrons	
	M2 (electrons) are mobile/move/flow	M2 dep on mention of electrons Ignore carry charge	
		0 marks if reference to ions in graphite or atoms moving	
(d)	M1 (number of atoms =) $60 \times 6.0 \times 10^{23}$	correct answer without working scores 2	2
	$M2 \ 3.6 \times 10^{25}$	answer must be in correct standard form to 1 decimal place	
			Total 9

_	uestion number	Answer	Notes	Marks
9	(a) (i)	the metal oxide/it loses oxygen	ACCEPT metal ions gain electrons Ignore metal oxide gains electrons	1
	(ii)	(the gas would escape and) it is flammable/could cause a fire/could cause an explosion		1
	(iii)	An explanation that links the following two points		2
		M1 to stop oxygen/air entering the tube OWTTE		
		M2 as some of the metal would change back to the metal oxide/be oxidised/react with oxygen OWTTE		
	(iv)	A description that refers to the following two points		2
		M1 reheat the tube and contents(and reweigh when cool)	ALLOW repeat the instructions/repeat what I did	
		M2(repeat) until constant mass is obtained OWTTE	Reheat to constant mass scores 2	
	(b) (i)	M1 mass of oxygen = 4.46 – 4.14 OR 0.32 (g)	correct answer without working scores 2	2
		M2 (moles of oxygen atoms = 0.32 ÷ 16 =) 0.02(0)	ALLOW ecf on incorrect mass of oxygen atoms	
	(ii)	(moles of M =) 0.02(0)	ALLOW ecf as long as an attempt has been made to find moles	1
	(iii)	M1 $(A_r \text{ of } M =) 4.14 \div 0.02(0)$	ALLOW ecf from (ii)	2
		M2 207	207 without working scores 2 ALLOW ecf on incorrect mass of M or incorrect moles -use of 4.46 gives 223 (scores 1)	
	(iv)	Pb/lead	ALLOW ecf on incorrect A _r of M as long as calculation in (ii) and/or (iii) is viable Use of 4.46 gives 223 Francium (scores 1)	1
				Total 12

Question number	Answer	Notes	Marks
10 (a)	to remove excess/unreacted/undissolved/insoluble zinc/solid/metal		1
(b)	A description that refers to the following four points	Max 1 mark if solution evaporated to dryness	4
	M1 heat the solution to evaporate some of the water/ to form a saturated solution/ to crystallisation point	If solution left to partially evaporate without heating only M3 and M4 can be awarded	
	M2 leave the solution to cool /leave the solution for (more) crystals to form		
	M3 filter off the crystals	Decant/pour off solution/pick out crystals IGNORE references to washing	
	M4 suitable method of drying the crystals	e.g. dry between filter papers/dry in a warm oven/ leave to dry	
		REJECT hot oven or direct heating with Bunsen burner	
		No M4 if crystals are washed after drying	
(c) (i)	M1 moles of zinc = $\frac{9.75}{65}$ OR 0.15(0)		2
	M2 mass of $Zn(NO_3)_2.6H_2O = 297 \times 0.15(0)$ (g) = 44.55 (g)	44.55 / 44.6 (g) without working scores 2	
		ALLOW 297 X 9.75/65 =44.55/44.6 for 2 marks	
		297 X 9.75 /30 = 96.52 scores 0	
(ii)	M1 36.4 ÷ 44.55 × 100	ALLOW ecf from (i)	2
	M2 81.7(%)	ALLOW any number of sig figs except 1 but rounded correctly	
		correct answer without working scores 2	
		use of 44.6 gives 81.6(%)/82 use of 45 gives 80.9(%)/81	
			Total 9